BaiTip of the Day - December 14th, 2016 - Increasing Distance

Operators that would like to squeeze a few more miles/kilometers out of their eNodeB can now achieve this by changing the Zero Correlation Zone Config Parameter in the eNodeB Web GUI.

  1. Log into the eNBs’ web gui.
  2. LTE Settings->Random Access Parameters page.
  3. On the Zero Correlation Zone Config parameter, change the default (10) to (12).
  4. Reboot the eNB

A few operators have experimented with this setting and have achieved good performance at 8 miles/13 kilometers. Theoretical maximum distance is 9 miles/14 kilometers.

A Subframe setting of (2) and a Special Subframe setting of (7) were maintained. It is possible to change the SSF setting to (5) to allow for a longer Round Trip in the Guard Period. Feel free to experiment and let us know your results.

What about shorter distances? Do you have a chart for each value and distance?

For shorter distances, leave the settings at default. Performance is relative to the CQI, which is based on CINR and Receiver Sensitivity. The CQI defines the Modulation Coding Rate (MCS), which in short distances should be pretty strong unless there are severe attenuating obstacles.

Rick, I was thinking more of where cells are overlapping from adjacent towers. Would changing this setting help in that case. Keep in mind I don’t want to use PCI lock. I shouldn’t have to make changes to the UE in order to get the best performance out of the system.


I did some research. I’m not sure if this helps you or not.

n the previous part (1 out of 3) we discussed the relationship between the preamble format and the cell radius. In this delivery, we will discuss how the ZeroCorrelationZoneConfig parameter affects the cell radius.

The parameters ZeroCorrelationZoneConfig and RootSequenceIndex are used to generate 64 random access signatures in each cell (all these access signatures should be different in each cell). Both, the ZeroCorrelationZoneConfig and the RootsequenceIndex paramaters are broadcast in SIB2. The random access sequences are built via the selection of a Zadoff-Chu sequence (one out of 839) given by RootSequenceSequence and a cyclic shift (used 64 times to generate the 64 random access signatures from the Zadoff-Chu sequence selected). The cyclic shift is indirectly given to the UE by the parameter ZeroCorrelationZoneConfig, as shown in the table below (see columns two and three and note that the cyclic shift has limited values). The available cyclic shifts are listed in 3GPP TS 36.211 table 5.7.2.-2.

The cyclic shift is also related to the cell size. The relationship between the cyclic shift and the cell size is given by equation (1):

(NCS - 1) * (800 μs/839) ≥ RTD + Delay Spread (1)

In the equation, RTD stands for Round Trip Delay (twice the cell radius). Hence:

RTD = 2 R/c (2)

Then, the cell radius is given by:

R ≤ [c/2][(NCS - 1)(800 μs/839)-Delay spread] (3)

For instance, if we assume that ZeroCorrelationZoneConfig is 12, then from the table above, Ncs = 119. Furthermore, if the delay spread = 6 μsec, then the cell size will be approximately 15.97km. Note that the smaller the cyclic shift, the smaller cell size.

The delay spread in the equation above should be calculated by the RF engineer after a drive test is carried out in the areas of interest. The value of the delay spread is typically different for rural, suburban, urban and dense urban environments.

1 Like

Thanks Rick. I believe that information will help. The piece above was from part 2.

1 Like

If we change the Zero Correlation Zone parameter, should we change it on all eNB in the network?

I’m curious as it seems a setting like this would alter the timing and throw off GPS sync.


Response from Baicells Support seems to indicate this doesn’t have an effect on GPS Sync:

“based on the above description the zone correlation zone config doesn’t need to be the same for all the cells in the network it depends on the cell dimensions and the UE requirements of the particular cell”